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Abstract
In this work we analyze the expressive manifestation

of a child’s engagement behavior on his speech as well
as in the speech of psychologist interacting with the
child. Visual cues such as facial gestures and gaze are
known to be informative of engagement, but here, we
examine the less studied speech cues of the children’s
non-verbal vocalizations. We study the spectral, prosodic
and duration features obtained from the child and the
psychologist’s vocal data. We observe that these mea-
sures carry discriminative power in assessing specific
engagement levels of the children (49.2% accuracy in
classifying 3 levels of engagement compared to 33%
chance accuracy). We also present our results as a de-
tection task for disengagement with precision, recall and
f-measure of .70, .42, .53, respectively. The unweighted
accuracy for binary classification between engagement
and disengagement is 62.9%. Our results suggest that
vocal cues bear useful information in capturing the state
of engagement in speech, indicating that speech can play
an effective role in engagement assessment.

Index Terms: Child engagement, Rapid-ABC, autism

1. Introduction
Research studies on childhood development are broad
and multifaceted and have focused on several aspects
of motor, speech, language and socio-emotional devel-
opment [1, 2, 3, 4, 5]. Considerable work has also fo-
cused on the interplay between these developmental as-
pects. For instance, the study of joint attention has been
associated with speech and language development as well
as social cognition [6, 7]. Effects of joint attention on
spontaneous speech for children has revealed important
insights (e.g. increase in spontaneous speech by teach-
ing joint attention skills [8, 9]). Particularly for dis-
orders like autism, patterns of this relationship are es-

pecially of interest when behavior is deemed atypical
[3, 10, 11, 12, 13, 14]. Engagement can be closely re-
lated to joint attention as it is the process of sharing ones
attention and interest with another person using gestures
or gaze [15, 16], (for example in child play and inter-
action with the parents [17, 18]). Our work focuses on
engagement which can help inform the joint attentional
aspects of social interactions with a children.

For our experiments, we hypothesize that the speech
produced in the process, including the speech of the clin-
ician [19], also contains information helpful in determin-
ing one’s level of engagement. For this purpose, we use
the Rapid-ABC database, which comprises short interac-
tions between a child and a clinician involved in a series
of scripted activities. These activities elicit and study the
social communicative behavior of the children.

We explore the role of vocal cues, including that of
the interlocutor, in assessing engagement. Our experi-
ments exclusively focus on vocal cues (speech) and its re-
lationship with the engagement level of children. Most of
the vocalizations produced by the children in the database
are non-verbal as they are 9-30 months old. The clinician
interacts with the child, gauging his performance on a de-
fined set of tasks as well as rating the effort required to en-
gage the child as ‘0’,‘1’ or ‘2’, with ‘0’ indicating little ef-
fort. We fuse the information from acoustic-prosodic and
spectral features from the child and the clinician speech,
and speech duration features to obtain a final engage-
ment score for the child. For this three-class classifica-
tion, we achieve an unweighted accuracy of 49.2% over
chance accuracy of 33.3%. We also pose the question of
classifying engagement from speech as “disengagement”
detector where the classes ‘1’ and ‘2’ are representative
of disengagement, achieving an unweighted accuracy of
62.9%. Thus our experiments explore the role of speech
in defining engagement levels in children using engineer-
ing models, which when fused with cues from other sen-
sory channels (e.g. visual) may provide additional infor-

ISCA Archive
http://www.isca-speech.org/archive

Third Workshop on Child, Computer 
and Interaction (WOCCI 2012)

Portland, OR, USA
September 14, 2012

WOCCI 2012 25



mation to the psychologist.
In section 2 we describe the research methodology.

Section 3 contains the experimental setup, results, dis-
cussion followed by conclusions in section 4.

2. Research Methodology
2.1. Database

We use a set of data collected as part of a larger NSF
funded study that aims to develop novel computational
methods for measuring and analyzing the behavior of
children and adults during face-to-face social interac-
tions. In particular, we report on behavioral data col-
lected as part of the Rapid-ABC, a 3-5 minute interac-
tive assessment designed to elicit key social communica-
tive behaviors, including social attention, back-and-forth
interaction and nonverbal communication. The database
consists of mostly non-verbal children, 9-30 months old.
The initial phase of the database is comprised of 52 sub-
jects and 54 sessions (sessions repeated for 2 children).
Five different tasks designed to elicit expected responses
are conducted in each session. These tasks are smiling
and saying ”hello”, ball play, jointly looking at a book,
putting on a book on your head as if it is a hat, and smil-
ing and tickling.

There are two specific guidelines to score the child
in each of these five activities. One set of scores mark
certain actions taken by the child during the session. For
instance, a child is given a ‘+’ or ‘-’ depending on if s/he
makes eye contact and smiles or not. For each subtask,
the psychologist also notes whether the child was easy
to engage by a mark of ‘0’,‘1’ or ‘2’. A score of ‘0’
is given if the interaction required no to little effort by
the psychologist and the child was ready and eager to be
engaged. ‘1’ represents some effort on the part of the
psychologist due to the child’s shyness or distractability.
‘2’ is given for extensive effort by the psychologist or if
the child is very fussy and refuses to interact. We use
these scores for engagement and they are defined as class
‘0’, ‘1’ or ‘2’ in our classification experiment.

The database has several modalities including video,
audio and electro-dermal activity recording. We use au-
dio from lapel microphones for our analysis. We examine
50 children in separate sessions (×5 subtasks = 250 sub-
sessions) from the database because the lapel mike chan-
nels were corrupted for two of the children. 171 of these
sub-sessions are marked ‘0’ on the engagement scale, 49
as ‘1’ and 30 as ‘2’ (Table 2). Hence, we observe that the
instances of the child being disengaged are rare as com-
pared to the instances where the child was given a score of
‘0’. Table 1 shows the transition matrix for engagement
scores between consecutive sub-sessions in a session, as
derived from the database. Class ‘0’ can be seen as a
ground state for engagement because it is the most likely
transition given any current state. This fact motivates our

experiment on classifying the most engaged state from
the other two states.

Table 1: Transition matrix for engagement levels
Next Class

Class ‘0’ Class ‘1’ Class ‘2’
Current Class ‘0’ .75 .17 .08
Class Class ‘1’ .61 .24 .15

Class ‘2’ .50 .14 .36

2.2. Database Annotation

The first author marked the start and end time of the child
speech using Audacity software [20]. As the tasks don’t
require the child to respond vocally, he may be silent
throughout the entire sub-session. We find 194 of the 250
sub-sessions contain some child’s vocal activity. A break-
down of child engagement scores with the occurrence of
child speech is shown in Table 2.

Table 2: Engagement level vs Presence of child speech.

Sessions Class ‘0’ Class ‘1’ Class ‘2’
All Sessions 171 49 30

With child speech 125 42 27
Without child speech 46 7 3

From the table, we observe that class ‘1’ and class ‘2’
are more likely to occur in the presence of child speech.
In the absence of child speech, there are 10 instances of
class ‘1’ and class ‘2’ combined together as compared to
46 instances from class 0 (odds ratio 4.6). We have 69 and
125 such instances in the presence of child speech (odds
ratio 1.81). We use this intuition when we determine our
feature set in the form of speech duration features.

3. Experimental Setup
In this section we explain the classification approach to
identify engagement levels using speech from the child
and the psychologist. We break up our analysis into three
parts in terms of acoustic features. Such feature extrac-
tion and the classifier setup is explained section-wise be-
low.

3.1. Feature Extraction

We extract acoustic-prosodic, spectral and speech dura-
tion features (Table 3) for both child and the psychol-
ogist, using Praat software [21]. The spectral and the
prosodic features are mean normalized for each speaker.
Then, means and the variances are calculated over all the
utterances of each speaker in each sub-session. Since
we do not have manual annotation for the psychologist
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Figure 1: Classification setup

Figure 2: Class assignment tree

speech, we design an energy-based voice activity detec-
tor. The audio from the psychologist lapel microphone
is low pass filtered and compared to a threshold to detect
psychologist speech. All the instances of voice activity
overlapping with child speech are removed so that they
are not marked as psychologist speech. By the virtue of
this, speech overlaps may appear as just the child speech.
Also, the fraction of each sub-session containing child
and psychologist speech (as two different features) are
used to capture our hypothesis of a difference in engage-
ment level based on the amount the child speaks.

3.2. Classification setup

We perform our experiments in a cross-validation using
8:1:1 ratio to determine the train, development and test
set over the 50 sessions. We train separate multinomial
logistic regression models for child, psychologist and
speech duration features, after performing dimensional-
ity reduction on the feature set using principal component

Table 3: Feature description.

Feature Statistics used
Spectral MFCC µ, σ
Features
Prosodic Intensity µ, σ
Features Pitch µ, σ

Jitter µ, σ
Shimmer µ, σ

Speech Child As % of
Duration Speech Duration session duration
Features Psychologist As % of

Speech Duration session duration

analysis. A breakdown of the classification framework is
given in Figure 1 and the setup is explained below.

3.2.1. Child Speech

We train multinomial logistic regression on 194 sessions
where the child speech occurs. For cross-validation, we
leave all the sub-sessions in 5 sessions for testing and sub-
sessions from other 5 as development set. The other 40
sessions are used for training. Models are trained sepa-
rately on prosodic features (dimensionality 8) and spec-
tral features (dimensionality 26) after reducing the di-
mensionality using principal component analysis. PCA
is particularly important for spectral features as we have
fewer data samples, given the dimensionality of 26. The
number of principal components used is tuned on the de-
velopment set. We use unweighted accuracy as our metric
because of the heavy bias in the database. Unweighted
accuracy is reported for each feature set individually as
well as after fusion of the two feature sets. For fusion,
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Table 4: Classification Accuracies for each feature chan-
nel

Feature Feature Set Unweighted Effective
Source Accuracy for

Child

Chance 33.3%
Spectra 34.1% Class ‘0’
Prosody 32.6% Class ‘1’

Fused model 43.6%

Psychologist

Chance 33.3%
Spectral 36.3% Class ‘0’
Prosody 36.4% Class ‘0’

Fused model 37.0%
Speech 41.9% Class ‘0’,‘1’
duration

we multiply weighted probabilities from the two models,
with weights tuned on the development set. For final as-
signment of classes, we break down the process into two
steps. The first classification is class ‘0’ vs ~‘0’. We
directly compare the probabilities from class ‘0’ and the
sum of probabilities from class ‘1’ and ‘2’ weighted by a
factor k1 (Figure 2). In the next step, if the class is ob-
tained to be ~‘0’, we perform a probability comparison
between class ‘1’ and ‘2’, weighting the probabilities by
k2. The parameters k1 and k2 are tuned on the develop-
ment set.

3.2.2. Psychologist Speech

Since the psychologist speaks in all the sessions, we have
his/her speech available in all the 250 sub-sessions. We
perform a similar split and similar classification as above
and the results are reported for all the 250 sub-sessions.
These features become critical in the absence of child
speech.

3.2.3. Speech duration features

Features in this case are the speech durations of the child
and the psychologist expressed as a percentage of sub-
session time length. The experimental setup is again
same as above and the child speech time is set to 0 for
the sessions where it is absent.

The final fusion is done in a stacked generalization
framework [22]. We take the probabilities from each of
the five systems (2 spectral + 2 prosody + 1 time duration)
and train a regression model on the development set. The
probabilities from the test set are then used to determine
the final label. We assign the final label as shown in Fig-
ure 2. Since the data is biased, we multiple the probability
thresholds by k1 and k2, tuned on the development set for
maximum unweighted accuracy.

3.3. Results

We report the results for classification on child speech,
psychologist speech and the interaction features in Ta-
ble 4. Note that the results for child speech are not di-
rectly comparable with psychologist and interaction fea-
tures because of the fewer number of sub-sessions. The
final results after fusion are presented in Table 5. We
also report the results for the binary classification task for
disengagement where class ‘1’ and ‘2’ are merged to rep-
resent disengagement.

3.4. Discussion

We discuss the results for each of the classifiers below.

3.4.1. Child features

For the child features, we observe that whereas the spec-
tral features do well for class ‘0’, the prosody features
perform well for class ‘1’. Even though each of these
features perform close to chance for the unweighted ac-
curacy, they carry complementary information as to the
class accuracies. Hence we see an overall boost after fu-
sion.

3.4.2. Psychologist features

The psychologist features are very effective for class ‘0’
for all the cases. After fusion, class ‘0’ is classified al-
most perfectly, whereas there is some power in class ‘1’.
We do not observe any power in classification for class
‘2’. Poor performance of these features can also be at-
tributed to the energy based VAD. Since this form of VAD
is not very robust, we are likely to include other sources
of noise at times and might even exclude some of the psy-
chologist speech.

3.4.3. Speech duration features

These features are also most discriminative for class ‘0’,
but also perform well for class ‘1’. The discriminative
power of these features indicates that simple features like
these can help us in analyzing the engagement behavior
of children. This is also in agreement with our previous
intuition of using speech length as features. From all
above feature sets, we observe that the classification is
mostly biased towards class ‘0’. Class ‘2’ is weakest
in classification. To address the problem of bias in the
accuracy, we add class priors in our final fusion model.

3.4.4. Fusion framework

The fusion framework is tuned to maximize the un-
weighted accuracy. We observe that after fusion, the class
accuracies are more or less balanced. This suggests that
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Table 5: Classification Accuracies after fusion from the three feature channels
Feature Source Class-wise Accuracy Unweighted Unweighted

Class ‘0’ Class ∼‘0’ Class ‘1’ Class ‘2’ Accuracy Accuracy
(First node in Figure 2) (3 class) (2 class)

Fused model 56.1%
69.6% 62.9%

44.9% 46.7% 49.2%

Table 6: Classification Accuracies after fusion from the three feature channels
Feature Source Class-wise Accuracy Unweighted Unweighted

Accuracy (2 Class) Accuracy (3 Class)
Class ‘0’ Class ∼‘0’

56.1%
69.6% 62.9%

Class ‘1’ Class ‘2’
44.9% 46.7% 49.2%

the feature set, after fusion carries fairly equal discrimi-
native power for all the classes. From the confusion ma-
trix (Table 6), we observe that class ‘1’ is mostly con-
fused with class ‘0’ and class ‘2’ with class ‘1’. This
suggests that stronger classification between class ‘0’ and
the other two classes can help improve the accuracy. Also
within the class ‘1’ and ‘2’, better algorithms and features
need to be devised to capture the differences between the
two levels of disengagement.

Table 7: Confusion Matrix with class weighting
True Class

Class Class Class
‘0’ ‘1’ ‘2’

Predicted Class ‘0’ 96 17 7
Class Class ‘1’ 48 22 9

Class ‘2’ 27 10 14
Total 171 49 30

3.4.5. Disengagement detection

We can pose this problem as disengagement detection
task since class ‘1’ and ‘2’ are rarer in comparison to
‘0’ and class ‘0’ acts as the ground state (Table 1). We
represent the Table 6 in this view, where we merge the
class ‘1’ and ‘2’ (Table 7). The precision, recall and f-
measure for such a detection problem are .70, .42 and
.53, respectively. Also, the unweighted accuracy for such
a binary classification task is 62.9%. This suggests that
even though we have three discrete classes for the en-
gagement levels, there is a minute difference between the
class ‘1’ and class ‘2’ as compared to class ‘0’. Since the
assignment of these classes is based on subjective judg-
ment, it becomes challenging to draw defined boundaries
between these two classes.

Table 8: Confusion matrix with class weighting after
merging class ‘1’ and ‘2’

True Class
Class Class

‘0’ ‘1’ and ‘2’
Predicted Class ‘0’ 96 24

Class Class ‘1’ and ‘2’ 75 55

From the results, we observe that though each of the fea-
ture channels are weak in classification, we get a boost
after making a fused decision. Even though these accu-
racies are not very high in magnitude, they perform bet-
ter than chance all the time, indicating that the selected
features are capable of providing knowledge in analyz-
ing the phenomena of engagement. However, the setup
of the current experiment can be refined further to ex-
tract more information from these features. We can use
a better voice activity detection to segment the psycholo-
gist speech more robustly. Additionally, the classification
framework can be tuned further to improve the accuracy
in the perspective of disengagement detection.

4. Conclusion

We show that vocal cues are informative of a child’s
engagement, even though engagement is highly reflected
in visual behavior. We process the speech from a dyadic
interaction between the child and psychologist in Rapid-
ABC sessions and predict the engagement scores as
given by the psychologist. Since the psychologist plays
the role of both interactor and evaluator, we expect this
to reflect in his speech in addition to the child speech,
whose engagement is being evaluated. We, through
our experiments, show that the selected vocal cues do
contain some expressive power and this goes up with
the information fused. Hence, in this paper we make an
effort to link the vocal cues in children still in the phase
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of speech development to their engagement levels, which
further opens up more exploratory windows in analyzing
social behavior of children during interactions.

As a next step, we can look into the interaction dy-
namics between the psychologist and the child. In the
stated experiments, we treat these two sources separately
and perform fusion without studying their interrelation.
In the future, other turn taking features as overlap of
speech, occurrence of pauses can be studied. We can
also observe the child session as a whole and analyze
the temporal evolution of engagement over the sessions,
rather than studying them independently. As the data
is multi-modal, we can study the other features from
video and electro-dermal activity and observe their
correlation with speech as well as engagement. As
the psychologist is acting as both the interactor and
evaluator, this demands a closer scrutiny on his behavior
and better cues to predict the child engagement. Finally
the temporal evolution of engagement and detection of
salient events in speech as well as other modalities within
the sub-sessions themselves can be studied to achieve
further insights.
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